Stampa 3D per sensori al plasma
Marilisa Pischedda • 29 luglio 2022

Quale correlazione può esistere tra il rilevamento dell'energia atmosferica e la stampa 3D?
Si parte dalla Vitrolite e si arriva a sensori al plasma per il rilevamento dell’energia delle particelle cariche in atmosfera
e per la determinazione della sua composizione chimica.
È questo il processo che hanno realizzato gli scienziati del MIT
(Massachusetts Institute of Technology), fabbricando per la prima volta completamente in digitale dei sensori al plasma per veicoli satellitari.
Quali prestazioni mostrano? Le stesse dei sensori a semiconduttore di ultima generazione!
In aggiunta a ciò la stampa digitale di questi innovativi sensori non richiede la produzione in Clean Room, come viene definita l'area ad atmosfera controllata necessaria per salvaguardare dalla polvere le tecnologie aerospaziali durante la fase di produzione e integrazione.
Dal processo testato dai ricercatori del MIT ne consegue una riduzione di tempi e costi, rendendo i sensori al plasma fabbricati in 3D ideali per i nanosatelliti impiegati nelle comunicazioni e nel monitoraggio ambientale in alta atmosfera.
Perché partire dalla vetroceramica?
La vetroceramica è più resistente del silicio e dei rivestimenti a film sottile, tradizionalmente utilizzati per costruire i sensori al plasma.
Per evitare le imperfezioni rilasciate dalla fusione della polvere di ceramica tramite i laser, è stato hanno fatto ricorso alla polimerizzazione in vasca
e alla produzione additiva.
La prima consiste in una tecnica di stampa 3D utilizzata per la resina che prevede che l’oggetto finale venga realizzato uno strato alla volta, immergendo cioè ciascuno strato in una vasca piena del materiale di base allo stato liquido, la Vitrolite in questo caso. Ogni volta che uno strato viene immerso in vasca, al di sopra degli strati precedenti, avviene la polimerizzazione del materiale: l’oggetto si compone quindi con la sovrapposizione di strati dello spessore di soli 100 micron, pari a circa il diametro di un capello umano.
I sensori ottenuti non mostrano alcuna imperfezione e possono essere realizzati con forme anche molto complesse.
Tagliate al laser in forme perfette, infatti, le maglie isolanti del sensore garantiscono un allineamento in modo assoluto, consentendo ai sensori realizzati a mezzo stampa 3D di misurare valori dell’energia atmosferica con una più alta risoluzione.
Come funzionano i sensori al plasma?
Ai fini del corretto funzionamento, tali sensori devono essere elettricamente isolanti e in grado di resistere agli improvvisi e drastici sbalzi di temperatura.
L'isolamento elettrico
permette al sensore di filtrare l’energia del plasma atmosferico, eliminando elettroni e altre particelle ma conservando le particelle cariche presenti in atmosfera, che creano dunque una corrente elettrica. La corrente elettrica viene misurata dal sensore, rilevando l’energia atmosferica.
La precisione dell'allineamento delle maglie isolanti dentro al dispositivo determina, o meno, il successo di un sensore.
Credits: Additive Manufacturing, ASI
Condividi

Il 29 aprile , United Launch Alliance (ULA) lancerà in orbita il primo gruppo di satelliti della costellazione satellitare del Project Kuiper di Amazon . La missione è denominata “KA-01” (Kuiper Atlas 1) e verrà lanciata con un razzo Atlas V nella configurazione 511 dal complesso di lancio SLC-41 della storica base di Cape Canaveral Space Force Station in Florida.

L'Agenzia Spaziale Europea (ESA) ha pubblicato il "Zero Debris Technical Booklet" il 15 gennaio 2025, un documento fondamentale che delinea le tecnologie necessarie per raggiungere l' obiettivo di Zero Debris entro il 2030 . Questo è il risultato di una collaborazione tra ingegneri, operatori, giuristi, scienziati ed esperti di politica, tutti membri della comunità Zero Debris, composta dai firmatari della Zero Debris Charter. (European Space Agency, 2024)

Il telescopio spaziale James Webb (NASA/ESA/CSA) ha catturato un'immagine straordinaria del disco protoplanetario HH 30 , situato nella nube molecolare del Toro, all'interno della nube oscura LDN 1551. Questo disco, osservato di taglio, è circondato da getti e venti discali, offrendo una visione senza precedenti dei processi di formazione planetaria.

Isar Aerospace inaugura la collaborazione con il programma spaziale privato europeo con la missione “Going Full Spectrum” . Il 30 marzo 2025, il razzo Spectrum prende per la prima volta il volo dallo spazioporto norvegese di Andøya. Dopo due rinvii dalla settimana precedente per condizioni meteo avverse, il decollo è avvenuto alle 12.30 ora locale.

L’esplorazione spaziale si evolve e richiede lo sviluppo di nuove tecnologie per poter essere supportata. I sistemi robotici inglobano nuove tecnologie consolidate sulla Terra, adattandole e perfezionandole all’impiego nello spazio, ma spesso è la necessità di trovare soluzioni a situazioni e problematiche tipiche dell’ambiente spaziale, a far sì che vengano sviluppate nuove tecnologie, che poi trovano impiego anche nelle applicazioni terrestri. Considerazione che non esula l’ esplorazione spaziale umana , con requisiti ancora più stringenti, da rivalutare in base all’ambiente in cui ci si trova ad operare. Vuoto, microgravità, tipologia di orbita, pianeta o corpo celeste, radiazioni e temperatura sono solo alcuni dei parametri che dettano fortemente le condizioni al contorno di una missione. Ad oggi pensiamo agli astronauti come a quella piccola parte di umanità che dal 2000 vive continuativamente al di fuori del nostro pianeta, se pur con alternanza di equipaggio a circa 400 km di quota dalla superficie terrestre. Eppure, quella condizione di microgravità che si sperimenta a bordo della ISS, non sarà perpetua e gli scenari futuri si stanno già delineando. I programmi di esplorazione spaziale parlano chiaro: andremo oltre l’orbita terrestre , sulla Luna, per testare e validare quelle tecnologie che ci consentiranno di spingerci oltre, anche verso il pianeta rosso. Ci spostiamo dunque dall’orbita terrestre a quella lunare, e da qui alla sua superficie, passo che comporterà lo stabilirsi di un insediamento in condizioni differenti da quelli sperimentati attualmente dagli astronauti.

La materia oscura è certamente una delle componenti più misteriose dell'universo. Sebbene sia invisibile e la sua natura sia sconosciuta, costituisce circa il 25% dell'universo , una quantità di gran lunga superiore a quella della materia ordinaria visibile. Non possiamo osservarla direttamente, né sappiamo di cosa sia fatta. L'unico modo per scoprirlo è attraverso i suoi effetti gravitazionali . Per svelarne i segreti, l'Agenzia Spaziale Europea (ESA) ha lanciato la missione Euclid nel 2023, con l'obiettivo di creare la più grande mappa tridimensionale dell'universo . Tracciando le posizioni di miliardi di galassie e misurando il fenomeno delle lenti gravitazionali, Euclid ci aiuterà a comprendere come la materia oscura sia distribuita nel cosmo e come influisca sull'evoluzione delle galassie.

Vi siete mai chiesti come fanno gli aeroplani a orientarsi nel cielo, specialmente di notte o in condizioni meteorologiche avverse? La risposta è nelle radioassistenze : una rete invisibile, ma essenziale, di segnali radio che guidano i velivoli lungo rotte precise e sicure. Benché oggi la tecnologia satellitare abbia rivoluzionato il settore, questi sistemi terrestri rimangono cruciali per garantire sicurezza, affidabilità e ridondanza, soprattutto in casi estremi o emergenze.

Mercoledì 26 marzo Firefly Aerospace lancerà una missione demo per Lockheed Martin mentre, circa un’ora dopo, Rocket Lab lancerà otto satelliti per l’azienda tedesca OroraTech. Il lancio di Firefly Alpha FLTA006 (sopranominata “ Message in a Booster ”) è la seconda missione che Firefly lancia per Lockheed Martin. Questa missione avrà il compito di portare in orbita il modello demo del LM 400 di Lockheed Martin, una piattaforma satellitare multi-missione progettata per ridurre i costi e rischi di lancio dei satelliti.

La costellazione HERMES Pathfinder (High Energy Rapid Modular Ensemble of Satellites) dell'Agenzia Spaziale Italiana (ASI) è stata lanciata con successo il 15 Marzo, alle 7:43 ora italiana, durante la missione Transporter 13 di SpaceX. Il lancio è avvenuto dalla Vandenberg Space Force Base (VSFB) in California, USA. I sei Cubesat della costellazione sono stati integrati su una piattaforma di rilascio ION, sviluppata dalla società D-Orbit, e posizionati su un vettore Falcon 9. Collocati su un'orbita eliosincrona a un'altitudine di circa 500-520 km e con un'inclinazione di 97,44 gradi, i nanosatelliti saranno dispiegati gradualmente, uno al giorno, circa una settimana dopo il lancio.