Il mio primo telescopio

Andrea Vanoni • 29 gennaio 2024

Come acquistare il primo telescopio?

La scelta del primo telescopio è certamente fonte di dubbi e perplessità, soprattutto per un novizio che si avvicina all’affascinante mondo dell’astronomia: già con una rapida ricerca nel web, si possono incontrare numerosissimi modelli che possono far sorgere non poche domande, una fra tutte:” quale differenza vi è tra uno e l’altro?”. In questo articolo andremo a conoscere le due categorie principali con alcuni consigli per iniziare.


Gli schemi ottici che vengono solitamente più usati per realizzare i telescopi amatoriali si distinguono principalmente in due tipi: i telescopi rifrattori e i telescopi riflettori.


Telescopi Rifrattori

Telescopio rifrattore su montatura equatoriale

I telescopi rifrattori sono costituiti da un lungo tubo chiuso sulla cui estremità frontale vengono installate due lenti che hanno la funzione di scomporre e ricomporre la luce che raccolgono.

Nell’uso amatoriale non raggiungono grandi aperture: difficilmente si trovano modelli che superino i 15 cm di diametro in quanto, oltre alle dimensioni che diventerebbero eccessivamente ingombranti, il costo per realizzare rifrattori a grande apertura non compenserebbe con i risultati ottenuti. Il loro utilizzo principale è il “planetario”, cioè l’osservazione della Luna, dei pianeti, e l’osservazione di stelle doppie: il telescopio rifrattore infatti, data la piccola apertura, risulta inadatto all’ osservazione di oggetti del profondo cielo come le galassie.


Esistono 2 sottotipi di questo telescopio: i rifrattori acromatici (figura1) e i rifrattori apocromatici. La differenza sostanziale tra questi due sistemi (oltre al prezzo) risiede nella capacità di mettere a fuoco nello stesso punto due colori contemporaneamente (nei rifrattori acromatici) oppure 3 (nei rifrattori apocromatici).

Per meglio comprendere il funzionamento e le differenze delle 2 ottiche occorre attingere qualche nozione dall’ottica: le lenti, in generale, scompongono la luce nei tre colori RGB, rosso, verde e blu. Questi 3 colori vengono successivamente ricomposti sul piano focale.

Il rifrattore di tipo ACROMATICO ricompone solo 2 di questi colori (lunghezze d’onda) con la conseguenza che gli oggetti osservati presenteranno un’aberrazione cromatica che consiste nel vedere un colore scuro ai bordi degli oggetti osservati;

nell’ottica APOCROMATICA invece, vengono ricomposti tutti e 3 i colori e dunque i colori scuri sono assenti, presentando un’immagine decisamente più incisa e contrastata. L’apocromatico, quindi, combina 2 diverse lenti, come nell’acromatico, ma dispone di uno o più elementi “correttivi” che riducono quasi a zero l’aberrazione cromatica.

Di conseguenza, a parità di diametro, un rifrattore apocromatico è decisamente molto più costoso, anche fino a 10 volte tanto, rispetto a un rifrattore acromatico tradizionale. Tuttavia, esistono in commercio degli accessori che permettono di correggere e di migliorare alcuni limiti che affliggono i rifrattori acromatici, anche se l’impiego di un apocromatico, anche se più costoso, è sempre consigliabile rispetto a una soluzione “corretta”.

I rifrattori apocromatici, proprio per le loro caratteristiche, sono i più gettonati e i più consigliati nel campo dell’astrofotografia: limitarsi solo a un uso “visuale” minimizzerebbe molto le potenzialità di questi strumenti. 


Telescopi Rifrattori

telescopio riflettore (newton) su montatura equatoriale

Rispetto ai rifrattori, i telescopi riflettori sono più facili da costruire. Sono costituiti da uno specchio parabolico (o iperbolico, come nei telescopi Ritchey-Cretién), detto primario, che ha la funzione di raccogliere la luce e di convogliarla nel punto di fuoco della parabola e da uno specchio secondario. Vi sono diverse configurazioni, diversificate per usi, costi, pregi e difetti.


I riflettori newtoniani hanno un rapporto focale abbastanza corto, che generalmente si attesta su un valore di 5-6. Il loro principale utilizzo è certamente il planetario e il profondo cielo, in quanto riesce a risolvere oggetti anche poco luminosi proprio in virtù del suo rapporto focale. L’uscita visuale è posizionata vicino alla testa del tubo grazie a uno specchio di 90° che fa uscire lateralmente l’immagine nell’oculare. Vengono prodotti con diametri importanti, dai 15 cm in su, con alcuni modelli che arrivano ad avere un diametro di 30 o anche 50 cm.

Il difetto importante che affligge questo schema ottico è il COMA, un particolare difetto ottico che causa, ai bordi del campo visivo, una forma allungata delle stelle (che assomigliano a delle comete, da qui il nome coma) e che si può correggere applicando degli opportuni correttori. Questo difetto è tanto maggiore quanto più è corta la focale dello strumento. Di contro, un telescopio newton ha solitamente costi molto contenuti rispetto ai “colleghi” di pari diametro, con un ottimo rapporto qualità prezzo, cosa che lo rende molto appetibile anche come primo strumento.

Le immagini , cioè quelle attorno al centro del campo visivo sono pressoché perfette, a meno che non vi siano evidenti difetti ottici di fabbricazione.


Questo schema ottico è utilizzato, anche per la realizzazione dei cosiddetti telescopi “Dobson”, che non sono altro che riflettori newtoniani ma che vengono usati usando una montatura “a terra”, cioè semplicemente ancorando lo strumento a una base (solitamente in legno) appoggiata per terra, in modo da poter muovere lo strumento a proprio piacimento su entrambi gli assi ed avere una maneggevolezza notevole, pur se con uno strumento pesante e ingombrante. Particolarmente adatti e apprezzati per gli oggetti più lontani e, in particolare, per gli oggetti del profondo cielo, abbinati a oculari adatti a questo scopo vi offriranno visioni difficilmente replicabili con altri strumenti.



telescopio riflettore (newton) in configurazione Dobson

Fatta questa distinzione di base (vi sono altre categorie ma poco consigliate per chi inizia) per chi si vuole AVVICINARE a questa è disciplina senza spendere eccessivamente, il mio consiglio è quello di prendere o un piccolo rifrattore ACROMATICO (70-80-90mm di diametro) o un piccolo telescopio newton su configurazione newton o dobson (114/130/150mm). La cosa più importante da tenere conto è che, per rimanere accorti dal punto di vista economico, questi telescopi non possiedono motorizzazione (che aumenterebbe il prezzo) e quindi gli oggetti vanno cercati e inseguiti servendosi di atlanti o app per il cellulare. E’ però un modo sicuramente affascinante ed estremamente didattico per iniziare ad esplorare il cielo togliendosi non poche soddisfazioni.


Il consiglio successivo è quello di affidarsi ad esperti del settore, partecipando a serate organizzate dalle associazioni astrofile di zona, dove potrete toccare con mano questi telescopi e farvi consigliare adeguatamente. L’importante come dico sempre, è non farsi prendere dalla fretta e scegliere con saggezza.


Spero che questo piccolo articolo possa essere utile per chi si avvicina alla visione del cielo stellato, curioso di esplorare l’universo con occhi sempre nuovi!


Condividi

Autore: Gabriele Dessena 2 dicembre 2025
Tutto nasce da un episodio avvenuto il 30 ottobre su un A320 di linea, durante un volo tra Stati Uniti e Messico . L’aereo ha avuto una breve ma imprevista variazione di assetto, un “abbassamento di muso” non comandato mentre il pilota automatico era inserito. L’equipaggio ha ripreso il controllo in pochi istanti e il volo si è concluso con un atterraggio regolare. Da quell’evento, analizzato nei dettagli da Airbus e dalle autorità, è emersa una possibile vulnerabilità in uno dei computer che controllano il beccheggio e il rollio dell’aeromobile. Per questo, a fine novembre 2025, l’Agenzia europea per la sicurezza aerea (EASA) ha emesso una direttiva di emergenza (Emergency Airworthiness Directive, EAD) che riguarda una parte della flotta Airbus A319, A320 e A321, chiedendo interventi rapidi su hardware e software di bordo. È importante sottolineare subito che parliamo di un’ azione precauzionale , scattata proprio per evitare che un evento estremamente raro possa ripetersi in condizioni più critiche. La famiglia A320 (che comprende A318, A319, A320 e A321) è una delle più diffuse al mondo: è l’aereo tipico dei collegamenti di corto e medio raggio che utilizziamo per andare da una grande città europea all’altra. Proprio perché si tratta di migliaia di aeromobili, qualsiasi direttiva che li riguarda ha un effetto immediato sulla programmazione dei voli: alcune rotte vanno ripianificate, alcuni velivoli devono fermarsi qualche ora in più in manutenzione, e può comparire qualche ritardo o cancellazione. Non è il sintomo di un problema “misterioso” che appare all’improvviso, ma il risultato di una filosofia molto chiara: se si individua anche solo la possibilità teorica di una situazione indesiderata, si interviene in blocco sull’intera flotta interessata. Airbus, nel suo comunicato, ha spiegato che la combinazione tra un certo tipo di computer di volo e una modifica software recente ha reso quel componente più sensibile a particolari condizioni di radiazione solare, e che quindi si è deciso di aggiornare il software di circa cinquemila aerei e di sostituire fisicamente i computer su circa novecento esemplari più anziani.
Autore: Simone Semeraro 27 novembre 2025
Il 13 novembre 2025 segna una data importantissima per il settore spaziale, poiché un nuovo attore si aggiunge a SpaceX nel settore dei razzi riutilizzabili : è la compagnia spaziale di Bezos, Blue Origin , il cui razzo New Glenn è atterrato verticalmente in completa autonomia. Ad essere precisi, è stato il primo stadio, Jacklyn, ad essere atterrato e (quasi) pronto al riutilizzo. è il secondo tentativo di Blue Origin di effettuare questa impresa con successo, dopo il fallimento della parziale della missione NG-1 di gennaio dello stesso anno, quando il carico era stato lanciato con successo, ma dati telemetrici di Jacklyn si persero è non atterrò come previsto. Ma come siamo arrivati a questo punto?
Autore: AstroBenny (Bendetta Facini) 25 novembre 2025
Il 15 dicembre ULA lancerà 27 satelliti Amazon Leo (precedentemente conosciuta come Project Kuiper) in orbita terrestre bassa a circa 590–630 chilometri di altitudine. La missione LA-04 (Leo Atlas 4), sarà il quarto lancio di Amazon a bordo di un razzo Atlas V della United Launch Alliance (ULA) dal Space Launch Complex-41 a Cape Canaveral.
Autore: Daniela Giannoccaro 20 novembre 2025
La curiosità come punto di partenza I bambini hanno una caratteristica straordinaria: fanno domande su tutto. “Perché il cielo è blu?”, “Come fa un dinosauro a essere così grande?”, “Cosa c’è dentro il nostro corpo?”. Questa curiosità è il motore dell’apprendimento, e la realtà aumentata può trasformarla in esperienze concrete e coinvolgenti. La realtà aumentata spiegata ai genitori La realtà aumentata (AR) è una tecnologia che permette di sovrapporre immagini e informazioni digitali al mondo reale, visibili attraverso smartphone o tablet. Non è fantascienza: è uno strumento che rende lo studio un’avventura. Immaginate di puntare la fotocamera verso il libro di scienze e vedere il cuore che batte in 3D, o di trasformare il salotto in un piccolo planetario dove i pianeti orbitano intorno al Sole.
Autore: Lucia Pigliaru 18 novembre 2025
L’Europa aggiunge un nuovo tassello fondamentale alla sua capacità di osservare il pianeta: Sentinel-1D, il più recente satellite della missione radar Sentinel-1 del programma Copernicus, è stato lanciato con successo il 4 novembre alle 22:02 CET dal Centro spaziale di Kourou, in Guyana Francese, a bordo del lanciatore europeo Ariane 6. Trentaquattro minuti dopo il decollo il satellite è stato rilasciato correttamente in orbita, e alle 23:22 CET è arrivato il primo segnale a Terra, confermando che Sentinel-1D è attivo e pronto a iniziare le operazioni. Con questo lancio, la costellazione Sentinel-1 è ora completa e potrà garantire continuità alle osservazioni radar europee dei prossimi anni.
Autore: Giovanni Garofalo 13 novembre 2025
Comprendere gli impatti ambientali Uno degli aspetti meno esplorati ma più rilevanti della sostenibilità spaziale riguarda gli effetti ambientali del rientro dei detriti nell’atmosfera terrestre. Ogni anno, centinaia di frammenti artificiali rientrano e si disgregano a quote variabili, liberando gas, particelle e residui solidi che possono raggiungere il suolo o gli oceani. Nonostante il fenomeno sia ormai parte integrante dell’attività spaziale, le sue conseguenze sull’ambiente terrestre e atmosferico non sono ancora completamente comprese né quantificate. Per affrontare questa lacuna, la comunità scientifica ha avviato programmi di ricerca volti a caratterizzare i materiali utilizzati nei veicoli spaziali e a comprendere il loro comportamento durante il rientro. L’obiettivo è determinare quali sostanze si formano durante la combustione e la frammentazione, e in che misura possano interagire con l’atmosfera. Particolare attenzione è rivolta ai prodotti di ablazione , cioè ai residui generati dall’erosione termica dei materiali esposti a temperature estreme, e alla loro distribuzione dimensionale e ottica, poiché tali particelle possono contribuire a modificare la chimica dell’alta atmosfera. Parallelamente, si sta approfondendo la composizione dei propellenti residui e dei componenti strutturali dei razzi e dei satelliti, per valutare quali elementi sopravvivano al rientro e quali possano depositarsi sulla superficie terrestre o marina. Analisi di laboratorio e misurazioni in situ, ad esempio mediante razzi-sonda, permettono di stimare l’altitudine e l’intensità delle emissioni, migliorando i modelli fisico-chimici dell’atmosfera. Questi studi mirano a valutare gli effetti a lungo termine dei materiali iniettati negli strati superiori dell’atmosfera, in particolare nella mesosfera e nella stratosfera, dove le reazioni chimiche indotte potrebbero alterare l’equilibrio naturale dei gas.
Autore: AstroBenny (Bendetta Facini) 11 novembre 2025
L’Agenzia Spaziale Indiana (ISRO) ha annunciato che entro la fine dell’anno verrà effettuato un passo storico per il programma spaziale nazionale: il primo test orbitale della navicella Gaganyaan, un progetto che rappresenta il sogno dell’India di portare i propri astronauti nello spazio con mezzi interamente sviluppati nel paese.
Autore: Tiziana Cardone 4 novembre 2025
La missione PLATO (acronimo di PLAnetary Transits and Oscillations of stars) della ESA rappresenta un salto importante nella ricerca di esopianeti: piccoli pianeti rocciosi simili alla Terra, che orbitano attorno a stelle simili al Sole, con un occhio privilegiato verso la cosiddetta “zona abitabile”.
Autore: Elisa Goffo 28 ottobre 2025
I pianeti che conosciamo nella nostra galassia sono più di 6000, ma sappiamo ancora molto poco su come si formino. Il modo migliore per studiare i loro processi di formazione è osservare i sistemi planetari “appena nati”. Il sistema planetario PDS 70 , situato a circa 370 anni luce da noi , è il miglior esempio che abbiamo scoperto finora ed anche il più studiato. é infatti il primo sistema conosciuto in cui gli astronomi hanno potuto assistere direttamente alla nascita di pianeti extrasolari. PDS 70 è una stella giovane, di circa 5 milioni di anni, che si trova ancora nella sua “infanzia”, se confrontata con i 4,6 miliardi di anni del nostro Sole. Per questo, e per molti altri motivi, è uno dei luoghi più studiati del cielo, dove possiamo osservare direttamente pianeti in formazione.
Autore: Andrea Vanoni 9 ottobre 2025
Un tempo riservata agli osservatori professionali e alle agenzie spaziali, l’osservazione e la ripresa di corpi celesti come la Luna, i pianeti e persino il Sole è oggi alla portata di molti grazie ai progressi della tecnologia e alla crescente accessibilità di strumenti astronomici amatoriali. Sempre più appassionati di astronomia si cimentano nella fotografia planetaria e solare, ottenendo risultati sorprendenti e contribuendo, talvolta, anche alla ricerca scientifica. Negli ultimi anni, il mercato ha visto un’impennata nella qualità e nella disponibilità di telescopi, camere planetarie, filtri solari e software di elaborazione immagini pensati per gli astrofili. Strumenti come: • Telescopi a lunga focale , ideali per l’osservazione planetaria • Camere CMOS ad alta sensibilità e frame rate elevato • Software di stacking e post-processing (come AutoStakkert!, RegiStax e AstroSurface) hanno rivoluzionato le possibilità di chi osserva il cielo da casa, permettendo di ottenere dettagli sorprendenti di Giove, Saturno, Marte, delle fasi lunari e persino delle macchie solari.
Show More