Tecnologie obiettivo "Zero Debris": rilascio detriti

Giovanni Garofalo • 4 marzo 2025

L'Agenzia Spaziale Europea (ESA)  ha pubblicato il "Zero Debris Technical Booklet" il 15 gennaio 2025, un documento fondamentale che delinea le tecnologie necessarie per raggiungere l'obiettivo di Zero Debris entro il 2030. Questo è il risultato di una collaborazione tra ingegneri, operatori, giuristi, scienziati ed esperti di politica, tutti membri della comunità Zero Debris, composta dai firmatari della Zero Debris Charter. (European Space Agency, 2024).

Il documento identifica sei obiettivi tecnologici chiave, tra cui: prevenire il rilascio di nuovi detriti, migliorare la sorveglianza del traffico spaziale e approfondire la conoscenza degli effetti dei detriti spaziali. Questo sforzo collettivo rappresenta un passo significativo verso un futuro sostenibile nello spazio, promuovendo una collaborazione internazionale per la salvaguardia dell'ambiente orbitale terrestre. In questo articolo ci si focalizzerà principalmente sul rilascio dei detriti ad opera delle operazioni spaziali.


Prevenzione: rilascio di nuovi detriti

Uno degli obiettivi principali delineati nel booklet è la prevenzione del rilascio di nuovi detriti spaziali, indipendentemente dalle loro dimensioni.  Fin dall’avvento delle attività spaziali (Figura 2a), i lanci che hanno permesso alla razza umana di avventurarsi nello spazio sono stati Numerosi. Di contro, le attività spaziali portano con sé la problematica della generazione e del rilascio di particelle (più o meno grandi) in orbita (Figura 2b).

Questo richiede, ancora oggi, lo sviluppo di tecnologie e pratiche operative avanzate che minimizzino la generazione di detriti durante tutte le fasi delle missioni spaziali.


Figura 2 Cronologia (1956 – 2001) (a) dei lanci in orbita effettuati con successo da parte di varie agenzie spaziali e (b) della catalogazione di detriti spaziali in orbita. (Mehrholz, et al., 2002)

Evitare il rilascio intenzionale di detriti

I detriti spaziali comprendono numerose particelle naturali (meteoroidi) e artificiali (derivanti, per esempio, dalla frammentazione di uno stadio), che non assolvono più alcuna funzione. Tra questi si trovano satelliti non funzionanti, stadi, frammenti generati da missioni e detriti derivanti da esplosioni o collisioni. In questo ambito, tutti gli attori del settore devono evitare il rilascio involontario di qualsiasi detrito.

Alcuni di essi (numericamente parlando, milioni), sono troppo piccoli per essere tracciati, e rappresentano un rischio significativo per le missioni spaziali. In media i detriti viaggiano fino a 37.000 km/h, abbastanza da causare danni considerevoli anche se di dimensioni ridotte. Inoltre, la fisica delle collisioni presenta dei risvolti interessanti, se si considera che sopra i 1.000 km/h di velocità di impatto, la fisica permette al corpo di comportarsi come un liquido.


Per affrontare la minaccia dei detriti, la NASA utilizza il radar Haystack, capace di rilevare frammenti tra 5 mm e 30 cm. Questo strumento campiona statisticamente la popolazione di detriti puntando verso specifici angoli e rilevando gli oggetti che attraversano il suo campo visivo.


Il rilascio di elementi strutturali dagli stadi dei lanciatori (Figura 4) rappresenta un rischio significativo per l’ambiente spaziale. Se non adeguatamente contenuti, questi elementi possono trasformarsi in detriti a lunga permanenza, aumentando la probabilità di collisioni con veicoli spaziali operativi. 

Tutti gli attori del settore spaziale devono garantire che gli oggetti spaziali siano smaltiti con successo in modo tempestivo per mitigare il rischio di generazione di detriti e interferenze con le missioni operative. Le soluzioni più recenti per affrontare questo problema includono:

A. Lanciatori progettati per contenere i potenziali oggetti (frammentabili) relativi alla missione, inclusi strutture per lanci multipli, masse fittizie e adattatori. Per fare ciò sono necessari elementi strutturali dello stadio superiore progettati per prevenire il rilascio involontario di qualsiasi detrito.

B.   Migliorare i modelli di simulazione riguardanti l'esposizione all'ambiente spaziale (ad es. comprensione chimica per estrapolare i risultati, analisi TGA per simulare l'esposizione estrema al sole) 

Conclusioni

Sono necessari ulteriori sforzi per sviluppare soluzioni tecniche e operative volte a migliorare la probabilità di successo nel deorbitare gli oggetti spaziali al termine della loro missione. Raggiungere una rapida e efficace rimozione orbitale dopo la fine della missione è fondamentale per evitare l’accumulo di detriti.


Per ottenere un tasso di successo della rimozione orbitale di almeno il 99%, sono necessari miglioramenti a vari livelli, tra cui, ma non solo:

·      Aumentare la probabilità che un oggetto rientri autonomamente in atmosfera terrestre dopo la fine della missione;

·      Progettare architetture di veicoli spaziali più affidabili;

·      Integrare queste capacità con mezzi esterni, come i servizi di rimozione, quando necessario (Figura 5);

·      Garantire che gli oggetti spaziali siano predisposti per la rimozione.

L'attuale modello delle operazioni spaziali sta cambiando grazie ad aziende estremamente capitalizzate, quali per esempio SpaceX e Blue Origin. Prima, esso si basava sull'uso singolo dei veicoli spaziali, progettati per essere lanciati, operare e poi essere eliminati nell'atmosfera o posizionati in orbite morte. Per un futuro più sostenibile, è necessario passare a un modello di economia circolare nello spazio, che mira a ridurre l'uso delle risorse e aumentare il valore derivato dagli asset spaziali.

Condividi

Missione KA-01 per il lancio della costellazione satellitare del Project Kuiper di Amazon
Autore: AstroBenny (Bendetta Facini) 23 aprile 2025
Il 29 aprile , United Launch Alliance (ULA) lancerà in orbita il primo gruppo di satelliti della costellazione satellitare del Project Kuiper di Amazon . La missione è denominata “KA-01” (Kuiper Atlas 1) e verrà lanciata con un razzo Atlas V nella configurazione 511 dal complesso di lancio SLC-41 della storica base di Cape Canaveral Space Force Station in Florida.
Tecnologie e metodi per una rimozione tempestiva e sicura dei detriti spaziali
Autore: Giovanni Garofalo 18 aprile 2025
L'Agenzia Spaziale Europea (ESA) ha pubblicato il "Zero Debris Technical Booklet" il 15 gennaio 2025, un documento fondamentale che delinea le tecnologie necessarie per raggiungere l' obiettivo di Zero Debris entro il 2030 . Questo è il risultato di una collaborazione tra ingegneri, operatori, giuristi, scienziati ed esperti di politica, tutti membri della comunità Zero Debris, composta dai firmatari della Zero Debris Charter. (European Space Agency, 2024)
Immagine straordinaria del disco protoplanetario HH 30 catturata dal telescopio spaziale WEBB
Autore: Tiziana Cardone 15 aprile 2025
Il telescopio spaziale James Webb (NASA/ESA/CSA) ha catturato un'immagine straordinaria del disco protoplanetario HH 30 , situato nella nube molecolare del Toro, all'interno della nube oscura LDN 1551. Questo disco, osservato di taglio, è circondato da getti e venti discali, offrendo una visione senza precedenti dei processi di formazione planetaria.
Isar Aerospace missione “Going Full Spectrum”
Autore: Simone Semeraro 10 aprile 2025
Isar Aerospace inaugura la collaborazione con il programma spaziale privato europeo con la missione “Going Full Spectrum” . Il 30 marzo 2025, il razzo Spectrum prende per la prima volta il volo dallo spazioporto norvegese di Andøya. Dopo due rinvii dalla settimana precedente per condizioni meteo avverse, il decollo è avvenuto alle 12.30 ora locale.
Missione Soyuz MS-27 verso la ISS
Autore: AstroBenny (Benedetta Facini) 8 aprile 2025
La missione Soyuz MS-27 è stata lanciata con successo nella mattinata dell’8 aprile 2025, dal Cosmodromo di Baikonur in Kazakistan a bordo di un lanciatore russo Soyuz.
Habitat extraterresti per astronauti nelle missioni a lunga permanenza
Autore: Marilisa Pischedda 4 aprile 2025
L’esplorazione spaziale si evolve e richiede lo sviluppo di nuove tecnologie per poter essere supportata. I sistemi robotici inglobano nuove tecnologie consolidate sulla Terra, adattandole e perfezionandole all’impiego nello spazio, ma spesso è la necessità di trovare soluzioni a situazioni e problematiche tipiche dell’ambiente spaziale, a far sì che vengano sviluppate nuove tecnologie, che poi trovano impiego anche nelle applicazioni terrestri. Considerazione che non esula l’ esplorazione spaziale umana , con requisiti ancora più stringenti, da rivalutare in base all’ambiente in cui ci si trova ad operare. Vuoto, microgravità, tipologia di orbita, pianeta o corpo celeste, radiazioni e temperatura sono solo alcuni dei parametri che dettano fortemente le condizioni al contorno di una missione. Ad oggi pensiamo agli astronauti come a quella piccola parte di umanità che dal 2000 vive continuativamente al di fuori del nostro pianeta, se pur con alternanza di equipaggio a circa 400 km di quota dalla superficie terrestre. Eppure, quella condizione di microgravità che si sperimenta a bordo della ISS, non sarà perpetua e gli scenari futuri si stanno già delineando. I programmi di esplorazione spaziale parlano chiaro: andremo oltre l’orbita terrestre , sulla Luna, per testare e validare quelle tecnologie che ci consentiranno di spingerci oltre, anche verso il pianeta rosso. Ci spostiamo dunque dall’orbita terrestre a quella lunare, e da qui alla sua superficie, passo che comporterà lo stabilirsi di un insediamento in condizioni differenti da quelli sperimentati attualmente dagli astronauti.
Come la missione Euclid cerca la materia oscura
Autore: Elisa Goffo 1 aprile 2025
La materia oscura è certamente una delle componenti più misteriose dell'universo. Sebbene sia invisibile e la sua natura sia sconosciuta, costituisce circa il 25% dell'universo , una quantità di gran lunga superiore a quella della materia ordinaria visibile. Non possiamo osservarla direttamente, né sappiamo di cosa sia fatta. L'unico modo per scoprirlo è attraverso i suoi effetti gravitazionali . Per svelarne i segreti, l'Agenzia Spaziale Europea (ESA) ha lanciato la missione Euclid nel 2023, con l'obiettivo di creare la più grande mappa tridimensionale dell'universo . Tracciando le posizioni di miliardi di galassie e misurando il fenomeno delle lenti gravitazionali, Euclid ci aiuterà a comprendere come la materia oscura sia distribuita nel cosmo e come influisca sull'evoluzione delle galassie.
Navigazione aerea: dalla radioassistenza terrestre ai sistemi satellitari
Autore: Gabriele Dessena 27 marzo 2025
Vi siete mai chiesti come fanno gli aeroplani a orientarsi nel cielo, specialmente di notte o in condizioni meteorologiche avverse? La risposta è nelle radioassistenze : una rete invisibile, ma essenziale, di segnali radio che guidano i velivoli lungo rotte precise e sicure. Benché oggi la tecnologia satellitare abbia rivoluzionato il settore, questi sistemi terrestri rimangono cruciali per garantire sicurezza, affidabilità e ridondanza, soprattutto in casi estremi o emergenze.
Orbita: Firefly Aerospace missione demo per Lockheed Martin, Rocket-lab satelliti per OroraTech
Autore: AstroBenny (Benedetta Facini) 25 marzo 2025
Mercoledì 26 marzo Firefly Aerospace lancerà una missione demo per Lockheed Martin mentre, circa un’ora dopo, Rocket Lab lancerà otto satelliti per l’azienda tedesca OroraTech. Il lancio di Firefly Alpha FLTA006 (sopranominata “ Message in a Booster ”) è la seconda missione che Firefly lancia per Lockheed Martin. Questa missione avrà il compito di portare in orbita il modello demo del LM 400 di Lockheed Martin, una piattaforma satellitare multi-missione progettata per ridurre i costi e rischi di lancio dei satelliti.
costellazione di satelliti HERMES per monitoraggio e trasmissione
Autore: Liliana Balotti 21 marzo 2025
La costellazione HERMES Pathfinder (High Energy Rapid Modular Ensemble of Satellites) dell'Agenzia Spaziale Italiana (ASI) è stata lanciata con successo il 15 Marzo, alle 7:43 ora italiana, durante la missione Transporter 13 di SpaceX. Il lancio è avvenuto dalla Vandenberg Space Force Base (VSFB) in California, USA. I sei Cubesat della costellazione sono stati integrati su una piattaforma di rilascio ION, sviluppata dalla società D-Orbit, e posizionati su un vettore Falcon 9. Collocati su un'orbita eliosincrona a un'altitudine di circa 500-520 km e con un'inclinazione di 97,44 gradi, i nanosatelliti saranno dispiegati gradualmente, uno al giorno, circa una settimana dopo il lancio.
Show More